МОСКОВСКАЯ ПРЕДПРОФЕССИОНАЛЬНАЯ ОЛИМПИАДА ШКОЛЬНИКОВ Технологический профиль Командный кейс

Разработка системы обнаружения опасных газов в воздухе

1. Актуальность

Известно, что растения поглощают углекислый газ и выделяют кислород, а человек - наоборот. Известно также, что современные пластиковые окна не пропускают в комнату уличный воздух, что препятствует естественной вентиляции в квартире. Соответственно необходимо регулярное и обязательное проветривание. С увеличением времени нахождения человека в помещении (квартире), что стало очень актуальным с приходом эпидемии COVID-19, вопрос вентиляции квартиры встал наиболее остро. В выдохе углекислого газа примерно 4,5%, в то время как в окружающем пространстве должно быть около 0,04%. Установлены следующие нормы на содержание CO₂ в помещениях:

Удивительно, но наша сонливость, усталость при работе может проявляться именно из-за отсутствия качественной вентиляции в помещении. Однако редко встретишь в домах или в офисных помещениях какие-либо детекторы, позволяющие выявить опасные концентрации вредных веществ и указать на необходимость проветривания.

Существует три способа создании вентиляции в квартире:

- естественная вытяжная вентиляция плюс периодическое проветривание окон;
- механическая вытяжная вентиляция плюс проветривание;
- механическая вытяжная вентиляция плюс приток свежего воздуха.

Пример реализации системы механической приточно-вытяжной вентиляции показан на картинке:

МОСКОВСКАЯ ПРЕДПРОФЕССИОНАЛЬНАЯ ОЛИМПИАДА ШКОЛЬНИКОВ Технологический профиль Командный кейс

2. Условия задачи

Целью кейса является разработка технологии производства портативного детектора CO₂, анализирующего состав воздуха в помещении и методики контроля за состоянием воздуха в процессе рабочего дня или нахождения в квартире. Участникам кейса необходимо будет разработать методику контроля за состоянием воздуха в помещении на основе анализа параметров воздуха и их влияния на здоровье человека, выполнить схемотехническую разработку детектора для контроля за состоянием воздуха с функцией записи данных и провести апробацию работы методики и детектора, проведя контроль качества воздуха в квартире/классе при разных условиях.

3. Техническое задание

- 1. Разработать конструкцию портативного датчика с возможностью автоматической записи данных о концентрации CO_2 на основе коммерческого сенсора CO_2 и микропроцессорной системы типа Arduino (далее по тексту датчик).
- 2. Предусмотреть возможность работы датчика от автономного источника питания в течение не менее 12 часов.

МОСКОВСКАЯ ПРЕДПРОФЕССИОНАЛЬНАЯ ОЛИМПИАДА ШКОЛЬНИКОВ Технологический профиль Командный кейс

- 3. Конструкция датчика должна обеспечивать его работоспособность при температуре
- 4. Конструкция датчика должна обеспечивать его работоспособность в помещения с повышенной влажностью до 95% .
- 5. Погрешность измерения СО₂ должна быть не более 5%.
- 6. Датчик должен обладать наглядной системой индикации уровней концентрации CO₂, при превышении опасного порога должен генерироваться световой и/или звуковой сигнал тревоги.
- 7. Датчик должен быть укомплектован съемной картой памяти объемом не менее 1 Gb.
- 8. Датчик должен обеспечивать автоматическую запись концентрации CO_2 в окружающем пространстве на карту памяти в файл формата .txt. Частота записи показаний CO_2 должна быть не реже 1 раза в минуту.
- 9. Результаты разработки должны быть оформлены в виде технического проекта.
- 10. На основании технического проекта датчика следует разработать технологический маршрут его сборки, отладки и испытаний на соответствие требованиям настоящего технического задания.

4. Требования.

от 0 до +120 0 C.

- 1. Технический проект датчика, включающий обоснование выбора комплектующих и конструкции, габаритным и сборочным чертежам и файлом с текстом программы для Arduino. При разработке технического проекта и его оформления следует ориентироваться на ГОСТ 2.120-2013 и ГОСТ 2.120-73.
- 2. Описание технологического процесса сборки и отладки датчика.
- 3. Программа и методика испытаний датчика на соответствие требованиям Т3.
- 4. Демонстрационный образец датчика, удовлетворяющий основным требованиям ТЗ.

5. Ограничения

- 1. Возможно использование любой доступной платформы-аналога Arduino.
- 2. Допустимо вместо записи файла на карту памяти использовать постоянный интерфейс связи с ПК и запись данных в файл (а также индикацию превышения уровня концентрации).
 - 3. При конструировании датчика допускается использование любой доступной программы для моделирования электронных схем на базе Arduino.

МОСКОВСКАЯ ПРЕДПРОФЕССИОНАЛЬНАЯ ОЛИМПИАДА ШКОЛЬНИКОВ

Технологический профиль Командный кейс

командный кейс

6. Шаблон пояснительной записки

Пояснительная записка в своей структуре должна отражать этапы разработки технологии производства портативного детектора CO₂, анализирующего состав воздуха в помещении и методики контроля за состоянием воздуха в процессе рабочего дня или нахождения в квартире. Отдельно должна быть описана методика контроля за состоянием воздуха в помещении на основе анализа параметров воздуха и их влияния на здоровье человека, схемотехническая разработка детектора для контроля за состоянием воздуха с функцией записи данных и примеры апробации работы методики и детектора.

Структура пояснительной записки включает описание вышеперечисленных критериев объемом не больше 2 страниц печатного текста (с приложением фотографий образцов). Работа выполняется шрифтом Times New Roman, размер — 12, межстрочный интервал — 1,5, красная строка — 1 см, выравнивание текста — по ширине. Перенос слов не допускается. Все прилагаемые таблицы или рисунки должны быть подписаны с указанием пояснения в тексте.

Отчёт формируется в редакторе Microsoft Word. Наименование текстового файла должно содержать фамилию и инициалы авторов, школу, например: «Школа111 Иванов А.М.docx».

Титульный лист проекта имеет следующие заголовки:

Разработка технологии изготовления флуоресцентной тест-системы из органических материалов

Фамилия И.О. авторов

класс, школа, адрес электронной почты автора